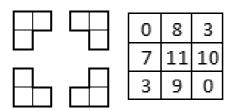
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ 2015–2016 уч. г. ШКОЛЬНЫЙ ЭТАП

10 класс

Решения и критерии оценивания

1. В таблице 3×3 записаны числа, как показано на рисунке. За ход разрешается выбрать три клетки в форме трёхклеточного уголка и уменьшить число в каждой из них на 1. Покажите, как такими операциями сделать таблицу, в которой во всех клетках стоят нули.



Решение. Один из способов таков.

0 8 3	-3	0 5 0		0 1 0		0 1 0		0 0 0
7 11 10		4 11 7	-4	0 7 7	-6	0 1 1	-1	0 0 0
3 9 0 -3		0 6 0		0 6 0		0 0 0		0 0 0

Сначала обнуляем угловые ячейки с числами «3» вместе с их соседями. Затем уменьшаем ячейки с числами 4, 11 и 5. Потом уменьшаем ячейки с числами 6, 7, 7. Из результата легко получается таблица с нулями.

Примечание. Заметим, что сумма чисел на большой диагонали равна 17, а сумма остальных чисел равна 34. Поэтому если выбирать только уголки, в которых одна клетка лежит на диагонали, а две другие нет, то при каждом шаге сумма чисел на диагонали будет уменьшаться на 1, а сумма остальных чисел на 2. Остаётся показать правильную последовательность выбора таких уголков.

Критерии проверки.

- Указана цепочка промежуточных состояний таблицы и понятно, как они получаются друг из друга, 7 баллов.
- Если цепочка промежуточных состояний указана с небольшими пробелами, но в целом верна 5-6 баллов.
- Если есть рассуждение о суммах чисел на большой диагонали и всех остальных чисел, но конкретный пример не приведён 3 балла.

2. Делится ли
$$13^{2013} + 13^{2014} + 13^{2015}$$
 на 61?

Ответ. Да, делится.

Решение. Преобразуем данную сумму:

$$13^{2013} + 13^{2014} + 13^{2015} = 13^{2013} \cdot (1 + 13 + 13^2) = 183 \cdot 13^{2013} = 61 \cdot 3 \cdot 13^{2013}.$$

Значит, данная сумма делится на 61.

Критерии проверки.

- Верное решение 7 баллов.
- Вынесено за скобки число 13^{2013} , но число в скобках посчитано с ошибкой и поэтому утверждается, что выражение не делится на 61, 2 балла.
- Приведён только ответ «да» 0 баллов.
- **3.** Даны два уравнения $ax^2 + bx + c = 0$ и $cx^2 + bx + a = 0$, в которых все коэффициенты ненулевые. Оказалось, что они имеют общий корень. Верно ли, что a = c?

Ответ. Нет, не верно.

Решение. Достаточно привести пример двух таких уравнений. Например, уравнения $x^2 - 3x + 2 = 0$ и $2x^2 - 3x + 1 = 0$ имеют общий корень x = 1. *Комментарий*. Можно указать общие свойства таких уравнений. Пусть x = t —

общий корень, то есть выполнены $at^2 + bt + c = 0$ и $ct^2 + bt + a = 0$. Тогда

$$-bt = at^2 + c = ct^2 + a \Rightarrow at^2 - ct^2 = a - c \Rightarrow (a - c)(t^2 - 1) = 0.$$

Если $a \neq c$, то $t = \pm 1$. Вывод: если дана пара таких уравнений, для которых $a \neq c$, то общий корень равен 1 или -1. Тогда коэффициенты удовлетворяют соотношению $a \pm b + c = 0$. Нетрудно подобрать такую тройку, в которой $a \neq c$.

Критерии проверки.

- Для полного решения задачи достаточно привести подходящую пару уравнений и показать, что они имеют общий корень, 7 баллов.
- Приведена подходящая пара уравнений и более ничего не обосновано, 5 баллов.
- **4.** В некоторой школе каждый десятиклассник либо всегда говорит правду, либо всегда лжёт. Директор вызвал к себе нескольких десятиклассников и спросил каждого из них про каждого из остальных, правдивец тот или лжец. Всего было получено 44 ответа «правдивец» и 28 ответов «лжец». Сколько правдивых ответов мог получить директор?

Ответ. 16 или 56.

Решение. Если вызвано n десятиклассников, то дано n(n-1) = 44 + 28 = 72 ответа, откуда n = 9. Пусть из этих 9 школьников t правдивцев и (9 - t) лжецов. Ответ «лжец» может дать только лжец про правдивца и правдивец про лжеца, таких фраз было 2t(9 - t) = 28, откуда t = 2 или t = 7. Если правдивцев двое, то они дали $2 \cdot 8 = 16$ правдивых ответов. Если правдивцев семеро, то они дали $7 \cdot 8 = 56$ правдивых ответов.

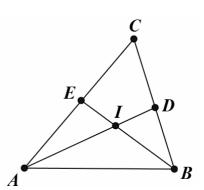
Комментарий. Обратите внимание на то, что из условия следует, что правдивыми являются половина из ответов «лжец». Но сразу не ясно, какова доля правдивых ответов «правдивец».

Критерии проверки.

- Полное решение 7 баллов.
- Правильно найдены оба случая (сколько правдивцев и лжецов), но неверно подсчитано число правдивых ответов 4 балла.
- Возможны 2 ситуации, описанные в задаче. Если верно разобрана только одна, то ставить 3 балла.
- Приведены оба ответа без объяснения 1 балл.
- Приведён только один из ответов 0 баллов.
- 5. Могут ли две биссектрисы треугольника разбивать его на четыре части равной площади?

Ответ. Нет, не могут.

Способ 1. Пусть такое возможно, т. е. биссектрисы AD и BE треугольника ABC разбивают его на четыре части равной площади. Пусть I точка — пересечения указанных биссектрис. Равновеликие треугольники AIB и AIE имеют общую высоту, проведённую из вершины A, поэтому BI = IE. Аналогично, из равенства площадей треугольников AIB и DIB следует равенство AI = ID. Значит, диагонали четырёхуголь- A



ника AEDB точкой пересечения делятся пополам, т. е. AEDB — параллелограмм. Это невозможно, так как прямые AE и BD не параллельны, они пересекаются в точке C.

Способ 2. Пусть такое возможно, т. е. биссектрисы AD и BE треугольника ABC разбивают его на четыре части равной площади. Треугольники ACD и ABD равновелики, поэтому биссектриса AD — медиана. Аналогично BE — медиана. Три медианы делят треугольник на шесть равновеликих частей, значит, площадь треугольника AIE составляет шестую часть площади треугольника ABC, а не четверть (как в условии). Противоречие.

Примечание. Заметим, что из решения первым способом следует, что условие задачи избыточно, достаточно равенства площадей трёх получившихся треугольников.

Критерии проверки.

- Любое полное верное решение 7 баллов.
- В целом верное решение, содержащее пробелы в обосновании, 5-6 баллов.
- Некоторые разумные идеи, не приведшие к верному решению, 1–2 балла.
- Верный ответ 0 баллов.

Всероссийская олимпиада школьников по математике 2015–2016 уч. г. Школьный этап. 10 класс

6. Существует ли натуральное число, кратное 2015, сумма цифр которого равна 2015?

Ответ. Существует.

Решение. Достаточно привести один пример такого числа. Покажем пару способов, как можно получать такие примеры.

Пример 1. Заметим, что $10\,075 = 2015 \cdot 5$, сумма цифр числа $10\,075$ равна 13.

Тогда число $\underbrace{1007510075...10075}_{155 \text{ раз}}$ кратно 2015, а сумма его цифр равна

 $13 \cdot 155 = 2015$.

Пример 2. Сумма цифр числа 2015 равна 8, сумма цифр числа $4030 = 2015 \cdot 2$ равна 7. Представим число 2015 в виде суммы двух слагаемых, одно из которых кратно семи, а другое — восьми. Например, $2015 = 7 + 8 \cdot 251$. Тогда число

4030<u>20152015...2015</u> кратно 2015, и сумма его цифр равна 2015. 251 раз

Критерии проверки.

- Для полного решения задачи достаточно привести пример числа и показать, что оно удовлетворяет данным требованиям, 7 баллов.
- Приведено число без объяснений, но жюри умеет доказывать, что оно подходит, 5 баллов.
- Если в решении есть идея «составлять» нужное число из чисел, кратных 2015, например 403040302015...2015, но количество чисел посчитано неверно, 3 балла.
- Только верный ответ 0 баллов.